Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules.

نویسندگان

  • Maria Fyta
  • Roland R Netz
چکیده

Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Force fields for divalent cations based on single-ion and ion-pair properties.

We develop force field parameters for the divalent cations Mg(2+), Ca(2+), Sr(2+), and Ba(2+) for molecular dynamics simulations with the simple point charge-extended (SPC/E) water model. We follow an approach introduced recently for the optimization of monovalent ions, based on the simultaneous optimization of single-ion and ion-pair properties. We consider the solvation free energy of the div...

متن کامل

AN NMR STUDY OF IONIC SOLVATION OF ALKALINE EARTH CATIONS WITH DIMETHYLSULFOXIDE IN NITROMETHANE SOLUTION

A proton NMR method for the determination of the solvation numbers of alkaline earth cations with dimethylsulfoxide (DMSO) in nitromethane as diluent is described. The method is based on the monitoring of the resonance frequency of DMSO protons as a function of DMSO to metal ion mole ratio while keeping the metal ion concentration constant. The average solvation number of cations at any...

متن کامل

Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion

In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...

متن کامل

Study of Ionic Solvation and Determination of Solvation Numbers of Alkaline Earth Cations with HMPA in Nitromethane Using 1H NMR Technique

A proton NMR method for the drtermination of salvation numbers of alkaline earth cations with hexamethyl phosphoramide (HMPA) in nitromethane (NM) as diluents is described. The method is based on monitoring the resonance frequency of HMPA protons as a function of HMPA / metal ion molar ratio at constant metalion concentration. The average salvation number of cations,  , at any HMPA / metal ...

متن کامل

Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions.

We study the solvation and the association properties of ion pairs in aqueous dimethyl sulfoxide (DMSO) solution by atomistic molecular dynamics (MD) simulations. The ion pair is composed of two lithium and a single sulfonated diphenyl sulfone ion whose properties are studied under the influence of different DMSO concentrations. For increasing mole fractions of DMSO, we observe a non-ideal beha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 2  شماره 

صفحات  -

تاریخ انتشار 2010